Oct 19

Updates in the world of Open Source Laser Tag

To quote GLaDOS, "It's been a long time."

While I've been away, there have been plenty of things going on in the world of open source, laser tag, etc. A quick google search showed me some recent developments that look exciting.

Skirmos is an open source laser tag game made by college students. It is based on the arduino, uses IR LED's to send tags (with a range of 500 feet according to their kickstarter page), X-bee radios to sync data, tricolor LED's for coloring the tag unit, has a screen (which seems to be their differentiator), and has a cool shell. Since it uses an arduino, it is hack-tastic for other arduino enthusiasts. I missed the initial kickstater, and will have to follow up with this in the future. Based on their website and kickstarter goals, the final product may not have all of the functionality that they state in their kickstarter video. But hey, they are building something cool, and I am supportive of building cool things.

The guys at Skirmos mention that they are working with Kevin Darrah. He's another person who has a tutorial for using those silly NRF24L01+ radios (and I say that they are silly because, while I have read their data sheet and understand how one could control them, I haven't spent the time to write a library for controlling them and don't want to. I want a free one that I can use for whatever I want. Including teaching children how to build laser tag). Kevin has a website here with some cool projects relating to LED cubes (shift registers, multiplexing, etc.) and some home automation stuff with the aforementioned radios (which turns out are really cheap on ebay). He also made a breakout board for those things. Because who wants to solder 8 pins every time they use one?

IBM developerWorks has a three part tutorial on building laser tag. Who knew? I had some trouble navigating from part 1 to part 2 (there wasn't a link from part 1 to part 2 that I found faster than googling for part 2, so I'm posting the links to all 3 parts). I may have to look at developerWorks from IBM for more cool projects.
Part 1
Part 2
Part 3

Aug 18

In system Programmer, Sparkfun Curriculum, Marketing for makerspaces, etc.

I came across an in system programmer for microcontrollers. I'm not sure I'd need one, since I usually just take the ATmega328p out of my arduino to program raw chips, but hey, if I want dedicated hardware to do so, this is one way to do it.

Sparkfun has a curriculum. I checked out a few of the beginner pages, and it looks good. I haven't gone in depth, but it may be something that I can use or send people to if they want a bunch of things to learn. But who knows.

There is an article in Make about a makerspace selling advertising space on their kits to finance them. I may be able to do something similar to finance kits for wherever I end up helping out. Ideas for later.

May 02

Quadcopters, mini and otherwise

I saw an article about a mini quadcopter that uses an ATMega128RFA1 (8 bit processor with built in 2.4 GHz transceiver). It's pretty cool, though the website didn't have a lot of build information in the post (there's some more stuff in his earlier posts, but it's not a clear cut thing to look at and know how to build your own without previous knowledge. Maybe I didn't look long enough.) Good instructions or not, it's a sweet project.

Speaking of Quadrotor helicopters, there's a nice youtube series done by The Crash Cast about building a tricopter (three rotor helicopter). If I ever have time to build one, after all of my other projects, then this is where I'd start. Maybe after I'm done teaching about registers and bits I can start teaching about PID controllers with this. How cool would of an advanced project would a quadcopter helicopter be (or tricopter. I don't judge)?

Apr 25

PCB design, Power Management, Custom Cables,

The Electronics Lab blog posted an article about a free online PCB design software called PCBWeb. It's currently in Beta, but it could potentially be useful for students to have access to a free, browser based software for designing PCB's.

In addition, Texas Instruments released their power management guide to assist in choosing components for supplying power. It's quite a read, including lots of information on their products and example circuits.

For those interested in creating custom cables for connecting PCB's, motors, sensors, etc., adafruit posted a video made by Derek Molloy of the School of Electronic Engineering at Dublin City University, Ireland about creating custom cables using crimp pins.

Apr 18

Board to use for permanent Laser Tag modules

I would like to have a stand-alone board to put in the laser tag modules instead of an arduino. This would allow students to use the arduino that they use in class for other projects while keeping the laser tag module intact. Right now I have two alternatives:

Moteino: Cost: $18.95. Uses surface mount components for a really small footprint (1.3x0.9 inches), ATMega328P processor, RFM12B tranceiver. This is the lowest cost module that I could find (as opposed to the JeeNode, which is 18 euros, and has a much larger footprint). I would need an FTDI adapter (or just use the one in the arduino to program it) to program the module, but that's fine. The Moteino also has a version without the RFM12B, which is $12.95.
Update: Low Power Lab is working on an ATMega32u4 based Moteino called the Moteeino Leo, which will probably be less expensive (since it's USB native). Keep an eye out for this.

Freakduino: Cost: $33. Freakduino is an open source arduino clone with an on board 2.4GHz radio (the Atmel AT86RF230). It has a great datasheet, and is a bit bigger than a standard arduino. It's a little pricier, but I like that it can have a longer range by adding an antenna.

miniSWARM: Cost: $25. miniSWARM is an open source arduino compatible with a 2.4GHz radio built into the chip. As of this posting, it is on Indiegogo for crowd funding. It can be used to build a mesh network and is based on the ATmega128RFA1. They are also giving away some miniSWARMs away on their website. This module has much more capability than I need for my application, but it may be useful if I want a mesh network and a much more complicated game.

Note: Both of these alternatives have built in radios for communicating with a central hub, which would keep track of tags. I could not have a wireless module and have all the communication between the central hub, bases, etc be done through IR. It'd be more protocol to write, but I can do it. Just not sure if I want the added flexibility of getting data from players as they play the game.

Later Note: The Waspmote is a commercial wireless sensor node based of the ATMega1281, which is arduino compatible. ATMega processors can be used for real, commercial applications. Fun fact to know.

Processor Note: So, I'm using an ATMega328p when I don't need that much functionality. I mean, I need 1 hardware timer, at least 10 I/O pins (if I put a 7-seg LED on it, or other peripherals), and some program space. But switching to an ATTiny could prove prohibitively complicated in the context of an introductory course. I don't want to have people programming an AVR with an arduino just to get a smaller microprocessor. It's a nice thought to use something with less capability because I don't need the capability, but if I end up expanding this project, it'll be nice to have excess program space and I/O pins to play around with. And who knows, maybe I'll need another hardware timer.

Apr 08

Programming Pen, 3D Printer, Raise money for Electronics, Sparkfun at NSTA

I came across an article about building a programming pen by Anthony VH. It's a device to aid in programming lots of microcontrollers. It may be useful if I have to make batches of laser tag devices.

There is also a 3D printer company that I should check out if I end up building a 3D printer or needing one for my projects.

I also saw an article in the new york times about a way to raise money for electronics. It's a company called Grant St., which wants to be a one stop shop for new, quirky electronics. I guess they will compete with Think Geek, but they are currently in Beta, so I don't know much more than the article says.

Sparkfun is doing fun stuff too. They're heading to the National Science Teachers Association conference.